Handwriting Character Recognition using Vector Quantization Technique
نویسندگان
چکیده
منابع مشابه
Cursive character recognition by learning vector quantization
This paper presents a cursive character recognizer embedded in an o-line cursive script recognition system. The recognizer is composed of two modules: the ®rst one is a feature extractor, the second one a learning vector quantizer. The selected feature set was compared to Zernike polynomials using the same classi®er. Experiments are reported on a database of about 49,000 isolated characters.
متن کاملCharacter Recognition Using Hierarchical Vector Quantization and Temporal Pooling
In recent years, there has been a cross-fertilization of ideas between computational neuroscience models of the operation of the neocortex and artificial intelligence models of machine learning. Much of this work has focussed on the mammalian visual cortex, treating it as a hierarchically-structured pattern recognition machine that exploits statistical regularities in retinal input. It has furt...
متن کاملHandwriting Moroccan regions recognition using Tifinagh character
The territorial organization of Morocco during administratives division of 2009 is based on 16 regions. In this work we will create a system of recognition of handwritten words (names of regions) using the Amazigh language is an official language by the Moroccan Royal Institute of Amazigh Culture (IRCAM) (2003a) [1] such as this language is slightly treated by researchers in pattern recognition...
متن کاملA Novel Vector Quantization Approach to Arabic Character Recognition
In this paper, a novel approach to Arabic letter recognition is proposed. The system is based on the classified vector quantization (CVQ) technique employing the minimum distance classifier. To prove the robustness of the CVQ system, its performance is compared to that of a standard artificial neural network (ANN)-based solution. In the CVQ system, each input letter is mapped to its class using...
متن کاملOff-Line Arabic Handwriting Character Recognition Using Word Segmentation
The ultimate aim of handwriting recognition is to make computers able to read and/or authenticate human written texts, with a performance comparable to or even better than that of humans. Reading means that the computer is given a piece of handwriting and it provides the electronic transcription of that (e.g. in ASCII format). Two types of handwriting: on-line and offline. The most important pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge Engineering and Data Science
سال: 2019
ISSN: 2597-4637,2597-4602
DOI: 10.17977/um018v2i22019p82-89